
AC20 Report

AC20 Report

Algorithm complexity analysis

Reference: AC20-P2016
Version: 2.0

Updated: 2016/06/13
Status: Public

Authors: Jérôme BOULMIER , Benoı̂t CORTIER

This document describes the AC20 Report project.

TEX is a trademark of the American Mathematical Society.

tex-upmethodology is owned by Stéphane Galland, Arakhnê.ORG, France.

This document was realised with LATEX and tex-upmethodology.

Copyright 2016 Jérôme BOULMIER & Benoı̂t CORTIER.

This document is published by the University of Technology of Belfort-Montbéliard. All rights reserved.
No part of this publication may be reproduced, stored in a retreival system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publishers.

Reference : AC20-P2016

Contents

1 Introduction 1

2 Elementary sorting algorithms 3

2.1 Fundamentals . 3

2.1.1 Empirical approach . 3

2.1.2 Mathematical approach . 4

2.2 Selection sort . 7

2.3 Insertion sort . 8

3 Merge sort 11

3.1 Principle . 11

3.2 Analysis . 13

4 Master Theorem 17

4.1 Theorem . 17

4.2 Proof . 18

4.3 Strassen algorithm . 21

5 Veldkamp spaces 25

5.1 Definitions . 25

5.2 Algorithms . 25

5.2.1 Bruteforce . 26

5.2.1.1 Veldkamp points . 26

5.2.1.2 Veldkamp lines . 27

5.2.2 Improvement . 28

5.2.2.1 Veldkamp points . 28

i

List of Figures

2.1 Selection sort trace. 8

2.2 Insertion sort trace. 9

3.1 Merge sort recursion tree. 15

4.1 Master Theorem graphical proof. 18

4.2 The speed of the algorithm for multiplication of two matrices of size 2000. 24

5.1 Comparison of the two algorithms. (ln scale)
Red — the first version, blue — the second one . 30

iii

List of Algorithms

2.1 Example algorithm for estimating a discrete sum . 5
2.2 Another example algorithm for estimating a discrete sum 5
2.3 Selection sort algorithm . 7
2.4 Insertion sort algorithm . 9
3.1 Merge algorithm . 12
3.2 Top-down merge sort algorithm . 13
4.1 Strassen algorithm . 23
5.1 ComputeHyperplanes . 26
5.2 isHyperplane algorithm . 26
5.3 Find Veldkamp lines . 27
5.4 Compute the complement of the symmetric difference of two hyperplanes 28
5.5 Find Veldkamp point algorithm . 29

v

1
Introduction

This report was written as part of the AC20 course at the UTBM. The principle of this course is to acquire
scientific knowledge by self-studying. Since we both intend to become computer scientists, we chose to
study algorithm complexity, a very important and interesting area of computer science. The idea is to
evaluate performances of algorithms.

In order to gather information on the subject, we used several approaches.

Firstly, we followed courses by using two differents MOOCs1 about algorithms. One from Princeton uni-
versity with lectures from [Sedgewick and Wayne, 2016] and one from Stanford university with lectures
from [Roughgarden, 2016].

Then, we used scientific books and articles to go into specific algorithms or theorems in depth.

We also had the chance to help with actual research by designing an algorithm and program to exploit
geometric data. It is an interesting situation where it is not possible to find pre-existing work to start with.

Chapter 2 exposes the fundamentals of the algorithm complexity study with the first section dedicated to
theoretical aspects and then by examining two classical sorting algorithms: selection sort and insertion
sort. Chapter 3 introduces and analyses a fast recursive algorithm based on merges called the merge sort.
Next, Chapter 4 presents and proves a famous theorem called the Master Theorem which is used to quickly
analyse a certain type of recursive algorithms so-called divide-and-conquer algorithms. Finally, Chapter 5
is dedicated to an application of what we learned to the actual geometrical problem as part of research at
the UTBM.

1Acronym for Massive Open Online Course, an online course aimed at unlimited participation and open access via
the web.

1

2
Elementary sorting algorithms

This chapter will introduce the fundamental approaches to analyse algorithms and use two fundamental
sorting algorithms as examples: the selection sort and the insertion sort.

2.1/ Fundamentals

There are mainly two approaches to analyse an algorithm:

• The empirical approach where observations are made to predict.

• The mathematical approach where results are formally proved.

The latter is both more technical and more rigorous. Often, both of these approaches are used jointly.

2.1.1/ Empirical approach

One method to analyse algorithms is the so-called ”Scientific method”. This is the very same approach that
scientists use to analyse the natural world. And this is effective for studying the running time of programs
as well. The idea is:

• Observe and take measurements.

• Hypothesize a model that seems consistent with the observations (linear, quadratic, exponential, . . .).

• Predict using the hypothesis.

• Verify the predictions with new observations.

• Validate by repeating until the hypothesis and observations mutually agree.

[Sedgewick and Wayne, 2011]

One key point is that designed experiments must be reproducible to allow other people to convince them-
selves. [Sedgewick and Wayne, 2011]

Observations: To make observations, one can simply run the program. Indeed, each run takes time to
be performed. Thus it is possible to measure this time to answer the question ”What is the running time of
my program” which is a core question in algorithm’s complexity study. This is an empirical analysis of the
running time.

The size of the problem is often the main factor in the running time. Many algorithms are insensitive to
data (running time doesn’t depend on the input data itself but on the quantity of the given data). Yet, some
algorithms are sensitive to data. In such case, it is required to go deeper into the analysis.

Here are the main steps to follow:

3

4 CHAPTER 2. ELEMENTARY SORTING ALGORITHMS

• measure the running time for different problem sizes (N = 1000, N = 2000, N = 4000, . . .).

• make a standard plot.

• make a log-log plot. lg 1(T (N)) on the ordinate and lg(N) on the abscissa. If the line is straight,
the complexity is a power law and the slope is the key. With slope = b, T (N) = aNb. Indeed,
lg(T (N)) = b lg(N) + c = lg(Nb) + c⇔ T (N) = 2lg(Nb)+c = 2cNb and a = 2c.

Another way to deal with power laws is to take the ratio of the running times for N and 2N and so forth.
Indeed, b = lg(ratio).

There are system independent and system dependent effects to take into account, too. The key effects are
independent of the computer used:

• Algorithm

• Input data

Those determine the exponent in the power law.

Then, there are a lot of system dependent effects:

• the Hardware: what is the CPU, the memory, etc.

• the Software: what is the compiler, the interpreter, etc.

• the operating system

• . . .

All those effects, independent and dependent ones, determine the constant in the power law.

2.1.2/ Mathematical approach

Mathematical models: D. E. Knuth postulated that it is possible, in principle, to build a mathematical
model to describe the running time of any program. The total running time of a program is determined by
two primary factors:

• Each instruction execution cost.

• Each instruction execution frequency.

The instruction execution cost depends on the computer (system dependent) and the instruction execution
frequency depends on the algorithm and the inputed data. If one knows both for every instruction in the
program, it is possible, for all instructions, to sum the cost multiplied by the frequency to get the running
time.

Determining the frequency of certain instructions may require a more or less high-level reasoning and
sometimes a probabilistic analysis.

Analysing instructions frequency can lead to expressions such as N3

6 −
N2

2 + N
3 . But lower order terms quickly

become insignificant in comparison to the leading term. For instance, with N = 1000, N3

6 ≈ 1.66 × 108 and
−N2

2 + N
3 ≈ −5.00 × 105. 1.66 × 108 is around 322 times greater than 5.00 × 105. That’s why the tilde

approximation is used. The mathematical tilde notation (∼) can be used, and is often used, to simplify
the mathematical expression by ignoring low-order terms which are negligible. Thus, N3

6 −
N2

2 + N
3 can be

simplifieds ∼ N3

6 . Indeed,

lim
n→+∞

N3

6
N3

6 −
N2

2 + N
3

= 1.

1lg stands for log-2 (the binary logarithm).

2.1. FUNDAMENTALS 5

Another important simplification is to only count operations that are most expensive in term of individ-
ual cost or frequency of occurrence. The typical behavior for many algorithm is to have a running time
depending only on a small subset of instructions, especially for N getting larger.

Estimating a discrete sum is a critical way to determine the mathematical expression of loops without having
to run the program.

Algorithm 2.1 Example algorithm for estimating a discrete sum
for i from 0 to N - 1 do

for j from i + 1 to N - 1 do
// statements

end for
end for

Algorithm 2.1 is a classical situation. While i grows in the main loop, the inner loop iterates less. Basically,
the statements in the inner loop are first executed N times, then N − 1 times and so forth until they are
executed only once. Overall, instructions in the inner loop are executed 1 + 2 + . . . + N − 1 + N =

∑N
1 i

times. Finally, one can approximate the discrete sum:

N∑
1

i =
N(N + 1)

2
∼

N2

2
.

Remark: In a more complex situation, it may be easier to use an integral approximation.

Algorithm 2.2 Another example algorithm for estimating a discrete sum
for i from 0 to N - 1 do

for j from i + 1 to N - 1 do
for k from i + 1 to N - 1 do

for l from i + 1 to N - 1 do
// statements

end for
end for

end for
end for

Algorithm 2.2 is another, more complex situation. Overall, instructions in the inner loop are executed
1 + 23 + . . . + (N − 1)3 + N3 =

∑N
1 i3 times. One can approximate the discrete sum using an integral and

then approximate the integral:

N∑
1

i3 ∼
∫ N

1
x3 dx =

[
x4

4

]N

1
=

N4

4
−

1
4
∼

N4

4
.

Common order-of-growth classifications: Often, the order of growth of the cost is one of just a few
functions of N. The following list contains some common order-of-growth functions:

• Constant (1): when executing a fixed number of operations.

• Logarithmic (log N): when the problem size is divided in half like in a binary search.

• Linear (N): for a single for loop.

• Linearithmic (N log N): often when using a divide-and-conquer method.

• Quadratic (N2): for two nested for loops.

6 CHAPTER 2. ELEMENTARY SORTING ALGORITHMS

• Cubic (N3): for three nested for loops.

• Exponential (bN): for an exhaustive search like checking all subsets in order to find all combinations
of elements.

Commonly-used notations: To describe the order-of-growth of algorithms there are some important
notations: Θ (Big theta), O (Big Oh) and Ω (Big Omega).

From a mathematical point of view, the running time can be expressed as a function from the set of integers
(the input size) to the set of reals: f : N→ R+∗. Let g be another complexity function.

The following equivalences exist:

• f ∈ O(g)⇔ ∃ c ∈ R+∗, f ≤ c × g

• f ∈ Ω(g)⇔ ∃ c ∈ R+∗, f ≥ c × g

• f ∈ Θ(g)⇔ f ∈ O(g) and f ∈ Ω(g)⇔ ∃ (c, k) ∈ R+∗2
, c × g ≤ f ≤ k × g.

For instance, with f (N) = 5N2 + 22N log N + 3N one can say that f ∈ Θ(N2), f ∈ O(N2), f ∈ O(N3),
f ∈ Ω(N2), f ∈ Ω(N) and so forth.

Table 2.1 summarises these different notations.

Notation Provides Example Shorthand for Used to
Big Theta Asymptotic order

of growth
Θ(N2) 1

2 N2

10N2

5N2+22N log N+3N
...

Classify algorithms

Big Oh Big Theta and
smaller

O(N2) 10N2

100N
22N log N + 3N
...

Develop upper
bounds

Big Omega Big Theta and
larger

Ω(N2) 1
2 N2

N5

N3 + 22N log N + 3N
...

Develop lower
bounds

[Sedgewick and Wayne, 2011]

Table 2.1: Commonly used order-of-growth notations.

Running time: To evaluate the algorithm performance, one may count the basic operations (compares,
exchanges, array accesses [read and write]). [Sedgewick and Wayne, 2011]

Extra memory: The amount of extra memory used by a sorting algorithm can be an important factor
given the device. There are algorithms that perform in-place sorting. They do not require any extra memory
that depends on the problem size. And there are algorithms that need extra memory to hold a copy of the
array. [Sedgewick and Wayne, 2011]

Types of analyses: Since the input can cause the performances to vary very widely, there are several
types of algorithm analyses:

• Best case: determined by the easiest input. The algorithm cannot be faster than the best case. It
provides a goal for inputs.

• Worst case: determined by the most difficult input. The algorithm is guaranted to not be slower than
the worst case. It provides a guarantee for inputs.

• Average case: expected for random input. It provides an estimate of average performance.

2.2. SELECTION SORT 7

The running time has to be somewhere between the best case (lower bound) and the worst case (upper
bound). Since actual data might differ from the models used, it’s ideal to design an algorithm with the
faster worst case possible to get an efficient upper bound guaranteed, an algorithm that always runs quickly.
Otherwise, one can try to randomize the inputs to try to provide a probabilistic guarantee.

The next section shows how to determine the expression of the running time of the selection sort.

2.2/ Selection sort

The ”selection sort” is one of the simplest sorting algorithms. A total order relation between items is
required. The same goes for almost every sorting algorithm. There are only a few exceptions like the ”radix
sort” which is not covered in this report. The principle is very simple: firstly, find the smallest item and
exchange it with the first entry. Then, find the next smallest item and exchange it with the second entry and
so forth.

Algorithm 2.3 Selection sort algorithm
N ← length(a)
for i from 0 to N - 1 do

iMin← i
for j from i + 1 to N - 1 do

if a j < aiMin then
iMin← j

end if
end for
swap(a, i, iMin)

end for

• swap: a function that swaps two elements in the given array.

In algorithm 2.3, the inner loop performs one compare by item to check if the item is smaller than the
previous smallest item found so far. Then, the exchange operation puts the smallest item found into its
final position so the number of exchanges is N. Thus, the running time is dominated by the number of
comparisons which is the most used basic operation in this algorithm.

It leads to the following proposition:

Proposition: Selection sort needs N2

2 compares and N exchanges in order to sort an array of size N. Thus,
the selection sort complexity is Θ(N2).

Proof: By examining the algorithm one can tell that for each i from 0 to N − 1, there is one exchange and
N − 1 − i compares. Thus the total is: N exchanges and

∑N−1
i=0 i =

N(N−1)
2 ∼ N2

2 compares.

One should be able to convince oneself in a more graphical way by examining the trace (an N-by-N table)
in Figure 2.1. In the trace, an unshaded letter is an item that is compared to the smallest one. Half of the
items in the table are unshaded. A diagonal is clearly formed. Each item on this diagonal corresponds to an
exchange.

8 CHAPTER 2. ELEMENTARY SORTING ALGORITHMS

Figure 2.1: Selection sort trace.

[Sedgewick and Wayne, 2002-2014b]

Two properties:

• The running time is insensitive to input. Indeed, the process to find the smallest item always requires
one pass through. It means that the running time is always the same even for a randomly-sorted array,
a partially-sorted array and even a totally-sorted one.

• The data movement is minimal since the number of array accesses is a linear function of the array
size. This is a rare property, every other sorting algorithm has a linearithmic or quadratic function
for data movement.

This sorting algorithm is interesting when elements are easily comparable but slow to exchange. However,
nowadays elements are mostly managed using references. And exchanging a reference is as simple as
exchanging an integer. Both uses 32 bits or 64 bits given the architecture, but it may vary according to the
programming language, interpreter, etc.

2.3/ Insertion sort

The ”insertion sort” is another simple sorting algorithm. The algorithm starts by checking the second
element. If this element is smaller than the first one, the two are exchanged. Then, the next element is
checked and moved to the left while there are greater elements on the left and so forth until the end of the
array.

2.3. INSERTION SORT 9

Algorithm 2.4 Insertion sort algorithm
N ← length(a)
for i from 1 to N - 1 do

j← i
while j ≥ 1 and a j < a j−1 do

swap(a, j, j - 1)
j← j − 1

end while
end for

• swap: a function that swaps two elements in the given array.

As one can see in algorithm 2.4, unlike the selection sort, the running time depends on the initial order of
the elements in the array. It is very fast with inputs already in order or partially ordered and slow with a
randomly ordered or reverse ordered input. It means that there are several cases: best, worst and average.

Typical examples of partially-sorted arrays are arrays where:

• each entry is not far from its final position.

• only a few entries are not in place.

• the array is large and a small array has been appended.

Proposition: To sort an array of size N, insertion sort needs N2

4 compares and N2

4 exchanges on the
average, N2

2 compares and N2

2 exchages in the worst case and N − 1 comparisons and 0 exchanges in the
best case. Thus, selection sort complexity is Θ(N2) in the worst and average cases and Θ(N) in the best
case.

Proof: The number of compares and exchanges is easy to visualize in the trace in Figure 2.2. One simply
counts all entries below the diagonal for the worst case, none for the best case and about half of them in the
average case.

Figure 2.2: Insertion sort trace.

[Sedgewick and Wayne, 2002-2014a]

10 CHAPTER 2. ELEMENTARY SORTING ALGORITHMS

This sorting algorithm is excellent for partially-sorted arrays, but does far more exchanges than the selection
sort in average and worst cases. Still, it is a fine method for tiny arrays. This algorithm is interesting since
partially-sorted arrays frequently arise in practice and can even be used to speed up other, more efficient
algorithms at some stages.

3
Merge sort

The merge sort is a fast algorithm based on a simple operation known as merging.

3.1/ Principle

The principle of merging is to combine two ordered arrays to make one larger ordered array. It directly
leads to a simple recursive sort algorithm known as mergesort: to sort an array, divide it into two halves,
sort the two halves (recursively), and then merge the results.

To begin, let’s consider the merge operation which is the core of mergesort.

Merge operation: A straightforward approach would be to merge two disjoint ordered arrays into a third
array. It requires to create a new output array of the requisite size each time (the third array), then choose
successively the smallest remaining item from the two input arrays to be the next item added to the output
array. But when mergesorting a large array, a huge number of merges are performed and the cost of creating
a new array to hold the output every time is very consequent. So, it is much more desirable to have an in-
place algorithm1 to avoid using a significant amount of other extra space. It is already known that solutions
that are known are quite complicated, especially by comparison to alternatives that use extra space. In this
report, we’re not going to cover the complicated solutions, but the abstraction of an in-place merge is still
useful. The signature of an in-place merge would be merge(Array, lower Index, middle Index, higher Index)
which is what we use in algorithm 3.1. It specifies a merge method that merges the subarray a[lo..mid]
with another subarray a[mid+1..hi] and leaves the result in a[lo..hi]. However, this algorithm works by first
copying the subarrays in an auxiliary array and then merging back to the original one. The auxiliary array
is be the same for every merge operation: only one is created. The auxiliary array was added to the initial
function signature to show that.

1An in-place algorithm works directly on the array to sort without creating a new one.

11

12 CHAPTER 3. MERGE SORT

Algorithm 3.1 Merge algorithm
Require: a an array of size N.
Require: hi an integer such as hi < N, the higher bound index.
Require: mid an integer such as mid < hi, the middle bound index.
Require: lo an integer such as lo < mid, the lower bound index.
Require: aux an auxiliary array of size N.

function merge(a, lo, mid, hi, aux): ∅
i← lo
j← mid + 1
for k from lo to hi do . copy a[lo..hi] to aux[lo..hi]

auxk ← ak

end for
. merge back to a[lo..hi]

while i ≤ mid and j ≤ hi do
if aux j < auxi then

ak ← aux j

j← j + 1
else

ak ← auxi

i← i + 1
end if

end while
while i ≤ mid do

ak ← auxi

i← i + 1
end while
while j ≤ hi do

ak ← aux j

j← j + 1
end while

end function

Next we’re going to cover a recursive mergesort algorithm that use our merge function.

Top-down mergesort: The top-down mergesort is one of the best-known examples of the utility of the
divide-and-conquer paradigm2. The idea is that if the algorithm sorts the two subarrays, then it sorts the
whole array by merging together the subarrays. Algorithm 3.2 features two functions: sort(Array) and
sort(Array, lower Index, higher Index, auxiliary Array). The second one is designed to be called by the first
one with the right initial parameters, then the function calls itself recursively until the trivial case is reached.
The trivial case is when both selected subarrays contain at most 1 element. Merging two subarrays of size
1 result in an ordered array of size 2. And two sorted subarrays of size 2 result in an ordered array of size 4
and so forth until all the merges have been applied to reach a sorted array of size N.

2A divide-and-conquer algorithm works by recursively breaking down a problem into two or more sub-problems of
the same or related type, until these become simple enough to be solved directly. Then to give a solution to the original
problem, one can simply combine the sub-problems’ solutions.

3.2. ANALYSIS 13

Algorithm 3.2 Top-down merge sort algorithm
Require: a an array of size N.
Require: hi an integer such as hi < N, the higher bound index.
Require: lo an integer such as lo < mid, the lower bound index.

function sort(a) : ∅
aux← createArray(size(a))
sort(a, 0,N − 1, aux)

end function
function sort(a, lo, hi, aux) : ∅ . Sort a[lo..hi]

if hi > lo then . Trivial case: hi ≤ lo, nothing to do
mid ← lo + (hi − lo)/2
sort(a, lo,mid, aux) . Sort left half
sort(a,mid + 1, hi, aux) . Sort right half
merge(a, lo,mid, hi, aux) .Merge results

end if
end function

The main advantages of the mergesort are:

• It is a stable3 sorting algorithm.

• Its complexity function f ∈ Θ(n log n).

That being said, the major drawback is that it uses extra space proportional to N and getting ride of this
issue is not that easy (for this reason, shellsort or quicksort may used instead; it depends on the situation).

Another possible algorithm is the bottom-up mergesort. This is a way to design a mergesort algorithm so
that all the merges of tiny subarrays are done on one pass, then a second pass to merge the resulting sorted
subarrays in pairs is done, and so forth until a merge that includes the whole array is done. This version is
not recursive, while still featuring the same properties.

Some optimizations are:

• The use of insertion sort for small subarrays. Most recursive algorithms can be improved by handling
small cases differently. Indeed, recursion guarantees that small cases will often arise. Insertion sort
is simple and, therefore, likely to be faster than mergesort for tiny subarrays. Thus switching to
insertion sort for subarrays of length 15 or less will improve the running time.

• Test whether the array is already in order. The running time can be reduced to be linear for arrays
already in order by adding a test to skip the call to the merge function if amid is less than or equal to
amid+1.

• Eliminate the copy to the auxiliary array. It is indeed possible to eleminate the time (not the space)
taken to copy the auxiliary array used for merging. The idea is to use two calls of the sort method
in order to switch the roles of the arrays. One call would be taking its input from the given array
and putting the sorted output in the auxiliary array, and the other would be taking its input from the
auxiliary array and putting the sorted output in the original array.

3.2/ Analysis

Merge operation: Algorithm 3.1 merges by first copying into the auxiliary array. Let n = hi − lo + 1.
This copy is made using a single for loop that runs n times and writes n times on the auxiliary array. Then

3A sorting method is stable if it preserves the relative order of equal keys in the array.

14 CHAPTER 3. MERGE SORT

the actual merge operation runs n times too (by summing the 3 loops number of iterations), but the number
of compares depends on the input array. There are at most n compares (only the first loop runs in the worst
case). There are at least n

2 compares (all the elements of one of the subarrays are greater than the other). In
every case it writes n times on the input array. That gives us n compares and 2n array writes for the worst
case, and n

2 compares and 2n array writes for the best case. Thus the merge operation complexity is Θ(n).

Top-down mergesort: Let C(N) be the number of compares needed to sort an array of length N.

We have C(0) = C(1) = 0 and for N > 0 one can write a recurrence relationship that directly translates
the recursive sort method to establish an upper bound: C(N) ≤ C(bN

2 c) + C(dN
2 e) + N. The first term is the

number of compares to sort the left half of the array. The second term is the number of compares to sort the
right half. The third term is the number of compares to merge in the worst case (see the the analysis of the
merge operation above).

In the same way, the lower bound is: C(N) ≥ C(bN
2 c) + C(dN

2 e) + N
2 . This time, the third term is the number

of compares to merge in the best case (see the the analysis of the merge operation above).

The exact solution to the recurrence is derived from when the equality holds and N is a power of 2. So, let
N = 2n. First, there is bN

2 c = dN
2 e = 2n−1, so:

C(2n) = 2C(nn−1) + 2n.

Dividing both sides by 2n gives
C(2n)

2n =
C(nn−1)

2n−1 + 1.

Applying the same equation to the first term on the right-hand side leads to:

C(2n)
2n =

C(nn−2)
2n−2 + 1 + 1.

Repeating the previous step n − 1 additional times directly gives:

C(2n)
2n =

C(n0)
20 +

n∑
k=0

1 = n,

which after multiplying by 2n gives:
C(2n) = 2nn.

Finally, by using N = 2n ⇔ log2 N = n log2 2 = n, we obtain:

C(N) = Nlog2(N).

Exact solutions for general N are more complicated, but the strategy remains the same. This proof made no
assumption on the input, thus it is valid no matter what the input is.

Another way to understand this proof is to examine the recursion tree in Figure 3.1. In this tree, each node
is a subarray for which the sort function does a merge operation. The size of the array is n. The tree has
precisely k = log2 n levels. For i from 0 to k − 1, the ith level from the top depicts 2i subarrays, each of
length 2k−i = 2k

2i = n
2i , each of which thus requires at most n

2i compares for the merge. Thus we have 2i n
2i = n

total cost for each of the k levels, for a total of n log2 n.

3.2. ANALYSIS 15

Figure 3.1: Merge sort recursion tree.'

&

$

%

n

n
2

n
22

...

n
2k

n
2k

...

n
22

...
...

n
2

n
22

...
...

n
22

...
...

n
2k

n
2k = Ok=lg n(n)

...

O2(n)

O1(n)

O0(n)

O(n · lg n)

+

+ ++

+ +· · ·

O

 k∑
i=0

2i ·
n
2i

+

+

+

=

+

=

=

⇓

O

 k∑
i=0

n

 = O(k · n)

=

+ +

= ⇔

· · ·

4
Master Theorem

The merge sort algorithm is an example of algorithm using a divide-and-conquer approach. The analysis of
a divide and conquer type algorithm leads to a recursive relation for the study of the complexity function.
In this chapter we prove a general theorem useful to deal with such recursive relations.

4.1/ Theorem

The Master Theorem assumes that the complexity function T (n) of an algorithm satisfies the following
recurrence:

T (n) = aT (
n
b

) + f (n),

where

• n is the size of the problem,

• a ∈ R, a ≥ 1 is the number of subproblems in the recursion,

• n
b with b ∈ R, b > 1, is the size of each subproblem (assuming that all subproblems are of the same
size), and

• f (n) is the cost of the work done outside the recursive calls.

Then:

1. If f (n) ∈ O(nc) where c < logb a then T (n) ∈ Θ(nlogb a).

2. If f (n) ∈ Θ(nc logk n) where c = logb a and k ≥ 0 then T (n) ∈ Θ(nc logk+1 n).

3. If f (n) ∈ Ω(nc) where c > logb a and a f (n
b) ≤ k f (n) with k ∈ R+, k < 1 and sufficiently large n then

T (n) ∈ Θ(f (n)).

Examples:

1. If an algorithm creates 8 subproblems, divides the problem size by 2 at each iteration and has f (n) =

10n2, the expression is:
T (n) = 8T (

n
2

) + 10n2.

Thus: a = 8, b = 2 and c = 2. Since logb a = 3, c < logb a (1st case). The Master Theorem
says that T (n) ∈ Θ(nlogb a) = Θ(n3) (indeed, assuming T (1) = 1, the exact recurrence relation is
T (n) = 11n3 − 10n2).

2. If an algorithm creates 2 subproblems, divides the problem size by 2 at each iteration and has f (n) =

2n, the expression is:
T (n) = 2T (

n
2

) + 2n.

17

18 CHAPTER 4. MASTER THEOREM

Thus: a = 2, b = 2 and c = 1. Since logb a = 1, c = logb a and f (n) = 2nc logk n = 2n, there is also
k = 0 (2nd case). The Master Theorem says that T (n) ∈ Θ(nc logk+1 n) = Θ(n log n) (again, assuming
T (1) = 1, the exact recurrence relation is T (n) = 2n log2(n) + n).

3. If an algorithm creates 2 subproblems, divides the problem size by 2 at each iteration and has f (n) =

2n2, the expression is:

T (n) = 2T (
n
2

) + 2n2.

Thus: a = 2, b = 2 and c = 2. Since logb a = 1, c > logb a and a f (n
b) = n2 ≤ 2kn2) by choosing

k = 1
2 (or greater) (3rd case). The Master Theorem says that T (n) ∈ Θ(f (n)) = Θ(n2) (assuming

T (1) = 1, the exact recurrence relation is T (n) = 4n2 − 3n).

The next section proves these facts.

4.2/ Proof

Let’s consider the recurrence relation:

T (n) = aT (
n
b

) + f (n) (∗).

Graphical proof : The solution can be instinctively found using a graphical approach. Figure 4.1 is a tree
showing how a typical divide-and-conquer algorithm divides itself. It shows the case with a = 2.

Figure 4.1: Master Theorem graphical proof.

It leads to the following complexity function:

T (n) =

depends on f︷ ︸︸ ︷
logb(n)−1∑

i=0

ai f (
n
bi) + alogb(n) f (1)︸ ︷︷ ︸

O(nlogb (n)) depends on tree depth

.

The first part is obtained by counting the number of nodes at each level (there are ai nodes at level i). The
last term O(nlogb a) is the sum across the leaves, which is alogb n f (1) = nlogb a f (1).

Algebraic proof : First, solve (∗). Let k = logb(n). In this proof we consider n = bk, but it’s generalizable.
Solve recurrence by n = bk.

4.2. PROOF 19

Tk = T (n)⇒ Tk = aTk−1 + f (bk) using (∗),

⇒ aTk−1 = a2Tk−2 + a f (bk−1),
...

⇒ ak−1T1 = akT0 + ak−1 f (b).

(4.1)

Finally, by summing up all the equations:

Tk = akT0 +

k−1∑
i=0

ai f (bk−1)⇒ T (n) =

operations︷ ︸︸ ︷
logb(n)−1∑

i=0

ai f (
n
bi) + O(nlogb(n))︸ ︷︷ ︸

tree depth complexity

.

1st case: f ∈ O(nlogb(a)−ε) (f complexity < tree depth complexity)

T (n) =

logb(n)︷ ︸︸ ︷
logb(n)−1∑

i=0

ai f (
n
bi) +O(nlogb(a)),

≤

logb(n)∑
i=0

ai(
n
bi)logb(a)−ε + O(nlogb(a)),

≤ nlogb(a)−ε
logb(a)−1∑

i=0

aib−i logb(a)bi ε + O(nlogb(a)),

≤ nlogb(a)−ε
logb(a)−1∑

i=0

aia−i logb(b)bi ε + O(nlogb(a)),

≤ nlogb(a)−ε
logb(a)−1∑

i=0

aia−ibi ε + O(nlogb(a)),

≤ nlogb(a)−ε
logb(a)−1∑

i=0

bi ε + O(nlogb(a)),

≤ nlogb(a)−ε bε logb(n) − 1
bε − 1

+ O(nlogb(a)),

≤ nlogb(a)−ε nε − 1
bε − 1

+ O(nlogb(a)),

≤ nlogb(a)−ε nε − 1
bε − 1

+ O(nlogb(a)),

≤ nlogb(a)−ε nε

bε − 1
+ O(nlogb(a)),

≤ nlogb(a) 1
bε − 1

+ O(nlogb(a)),

≤ O(nlogb(a)).

(4.2)

So T ∈ Θ(nlogb(a)).

2nd case: f ∈ Θ(nlogb(a)).

20 CHAPTER 4. MASTER THEOREM

Let (c, d) ∈ R+∗2
, with c < d. Then,

T (n) =

logb(n)∑
i=0

ai f (
n
bi) + O(nlogb(a)),

≤

logb(n)∑
i=0

ai × d × (
n
bi)logb(n) + O(nlogb(a)),

≤ d × nlogb(a) ×

logb(a)∑
i=0

ai × b−i×logb(a) + O(nlogb(a)),

≤ d × nlogb(a) ×

logb(a)∑
i=0

ai × a−i×logb(b) + O(nlogb(a)),

≤ d × nlogb(a) ×

logb(a)∑
i=0

ai × a−i + O(nlogb(a)),

≤ d × nlogb(a) ×

logb(a)∑
i=0

1 + O(nlogb(a)),

≤ d × nlogb(a) × (logb(a) + 1) + O(nlogb(a)).

(4.3)

Moreover,

T (n) =

logb(n)∑
i=0

ai f (
n
bi) + O(nlogb(a)),

≥

logb(n)∑
i=0

ai × c × (
n
bi)logb(n) + O(nlogb(a)),

≥ c × nlogb(a) ×

logb(a)∑
i=0

ai × b−i×logb(a) + O(nlogb(a)),

≥ c × nlogb(a) ×

logb(a)∑
i=0

ai × a−i×logb(b) + O(nlogb(a)),

≥ c × nlogb(a) ×

logb(a)∑
i=0

ai × a−i + O(nlogb(a)),

≥ c × nlogb(a) ×

logb(a)∑
i=0

1 + O(nlogb(a)),

≥ c × nlogb(a) × (logb(a) + 1) + O(nlogb(a)).

(4.4)

So we have, T (n) ∈ Θ(nlogb(a) × logb(a)).

3rd case: f ∈ Ω(nlogb(a)+ε).

a × f (
n
b

) ≥ a × (
n
b

)logb(a)+ε,

≥ a × nlogb(a)+ε × b−logb(a)−ε,

≥ a × nlogb(a)+ε × a−logb(b) × b−ε,

≥ nlogb(a)+ε × b−ε,

≥ f (n) × b−ε.

(4.5)

4.3. STRASSEN ALGORITHM 21

By using 4.5, we get

T (n) =

logb(n)∑
i=0

ai f (
n
bi) + O(nlogb(a)),

≥

logb(n)∑
i=0

ai(
n
bi)logb(a)+ε + O(nlogb(a)),

≥ nlogb(a)+ε
logb(n)∑

i=0

ai × b−i(logb(a)+ε) + O(nlogb(a)),

≥ nlogb(a)+ε
logb(n)∑

i=0

ai × a−i(logb(b) × b−iε + O(nlogb(a)),

≥ nlogb(a)+ε
logb(n)∑

i=0

b−iε + O(nlogb(a)),

≥ nlogb(a)+ε
logb(n)∑

i=0

(
1
bε

)i + O(nlogb(a)),

≥ nlogb(a)+ε
∞∑

i=0

(
1
bε

)i + O(nlogb(a)),

≥ nlogb(a)+ε 1
1 − 1

b

+ O(nlogb(a)),

≥ f (n)
1

1 − 1
b

+ O(nlogb(a)),

≥ O(f (n)).

(4.6)

So we have, T (n) ∈ Θ(f (n)).

4.3/ Strassen algorithm

To illustrate the Master theorem, we now introduce a well-known algorithm for matrix multiplication, the
Strassen algorithm.

To use the Strassen algorithm, we have to partition the matrix A and the matrix B into four blocks of equal
size. If the size of the matrix isn’t a power of 2, we fill the missing rows/columns with 0.

A =

(
a1,1 a1,2
a2,1 a2,2

)
, B =

(
b1,1 b1,2
b2,1 b2,2

)
.

So the resulting C is:

c1,1 = a1,1b1,1 + a1,2b2,1,

c1,2 = a1,1b1,1 + a1,2b2,1,

c2,1 = a1,1b1,1 + a1,2b2,1,

c2,2 = a1,1b1,1 + a1,2b2,1.

This equation is a basic product of two matrices. But if we use the Strassen algorithm, we can reduce the
number of multiplications to 7. We define M1,M2,M3,M4,M5,M6,M7 ∈ R

2(n−1)×2(n−1).

22 CHAPTER 4. MASTER THEOREM

m1 = (a1,1 + a2,2)(b1,1 + b2,2),
m2 = (a2,1 + a2,2)b1,1,

m3 = a1,1(b1,2 − b2,2),
m4 = a2,2(b2,1 − b1,1),
m5 = (a1,1 + a1,2)b2,2,

m6 = (a2,1 − a1,1)(b1,1 + b1,2),
m7 = (a1,2 − a2,2)(b2,1 + b2,2).

And so, we have:

c1,1 = m1 + m4 − m5 + m7,

c1,1 = m3 + m5,

c1,1 = m2 + m4,

c1,1 = m1 − m2 + m3 + m6.

And we repeat the process until A and B become ”small” (around 64). After that we use the basic product,
which is used because the constant of the Strassen algorithm is so large, that the basic product is faster than
the Strassen algorithm.

4.3. STRASSEN ALGORITHM 23

Algorithm 4.1 Strassen algorithm
function strassen(m1 : Matrix, m2 : Matrix, matrixSize : Integer) : Matrix

if matrixSize <MIN MATRIX SIZE then .Make a simple matrix multipliction using
three loops.

else
newMatrixSize← matrixSize / 2
initialize matrices a11, a12, a21, a22, b11, b12, b21, b22
initialize matrices p1, p2, p3, p4, p5, p6, p7
for i from 0 to newMatrixSize do . Dividing the matrices into 4 sub-matrices

for j from 0 to newMatrixSize do
a11[i][j]← m1[i][j]
a12[i][j]← m1[i][j + newMatrixSize]
a21[i][j]← m1[i + newMatrixSize][j]
a22[i][j]← m1[i + newMatrixSize][j + newMatrixSize]
b11[i][j]← m2[i][j]
b12[i][j]← m2[i][j + newMatrixSize]
b21[i][j]← m2[i + newMatrixSize][j]
b22[i][j]← m2[i + newMatrixSize][j + newMatrixSize]

end for
end for
tempM1← a11 + a22 . Compute p1 to p7
tempM2← b11 + b22
p1← strassen(tempM1, tempM2, newMatrixSize) . p1 = (a11 + a22) * (b11 + b22)
tempM1← a21 + a22
p2← strassen(tempM1, tempM2, newMatrixSize) . p2 = (a21 + a22) * (b11 + b22)
tempM2← b12 - b22
p3← strassen(a11, tempM2, newMatrixSize) . p3 = (a11) * (b12 - b22)
tempM2← b21 - b11
p4← strassen(a22, tempM2, newMatrixSize) . p4 = (a22) * (b21 - b11)
tempM1← a11 + a12
p5← strassen(tempM1, b22, newMatrixSize) . p5 = (a11 + a12) * (b22)
tempM1← a21 - a11
tempM2← b11 + b12
p6← strassen(tempM1, tempM2, newMatrixSize) . p6 = (a21 - a11) * (b11 + b12)
tempM1← a12 - a22
tempM2← b21 + b22
p7← strassen(tempM1, tempM2, newMatrixSize) . p7 = (a12 - a22) * (b21 + b22)
initialize c11, c12, c21, c22 . Computing the four parts of the matrix
c12 = p3 + p5
c21 = p2 + p4
c11 = p1 + p4 - p5 -p7
c22 = p1 + p3 -p2 + p6
for i from 0 to newMatrixSize do . Assembling the four parts of the matrix

for j from 0 to newMatrixSize do
m3[i][j]← c11[i][j]
m3[i][j + newMatrixSize] = c12[i][j]
m3[i + newMatrixSize][j] = c21[i][j]
m3[i + newMatrixSize][j + newMatrixSize] c22[i][j]

end for
end for

end if
end function

24 CHAPTER 4. MASTER THEOREM

Performance analysis. Using the Master Theorem,

T (n) = aT (
n
b

) + f (n) (∗),

T (n) = 7T (
n
4

) + n2 (∗).

We have 2 < log2(7), so we are in the first case. That’s why: T (n) ∈ O(nlogb(a)), where b = 2 and a = 7.

The complexity of the Strassen algorithm is O(nlog2(7)) ' O(n2.807).

Nevertheless, the constant is too large, that’s why we add a min size for the matrix.

In the following chart, leafsize is the size of the matrix before using a simple product, without partitionnig.

Figure 4.2: The speed of the algorithm for multiplication of two matrices of size 2000.

We can see that if we use the Strassen algorithm to compute the whole product it’s slower that using Strassen
until the size is smaller that 64 and after that one computes with a classical algorithm.

Moreover, the Strassen algorithm isn’t stable numerically. It means that if you have a computer which
doesn’t use a computer algebra system in some parts of the matrix, the approximations will grow and, so,
they aren’t the same in the whole matrix.

5
Veldkamp spaces

In this chapter, we apply the techniques developped in this report to solve a geometrical problem. Given a
geometry, i.e., a collection of points and lines (see 5.1), we provide an algorithm to define the Veldkamp
space (i.e., a new geometry) associated to the first one. We will also analyse the complexity of the proposed
algorithms. Moreover, this algorithm has already been used in a recent article [Saniga et al., 2016].

5.1/ Definitions

We start with a point-line incidence structure C = (P,L, I) where P and L are, respectively, sets of points
and lines and where incidence I ⊆ P × L is a binary relation indicating which point-line pairs are incident
(see, e. g., [Shult, 2011]). In what follows we shall deal with only specific point-line incidence structures
where every line has just three points and any two distinct points are joined by at most one line.
The order of a point of C is the number of lines passing through it.
A geometric hyperplane of C = (P,L, I) is a proper subset of P such that a line from C either lies fully
in the subset, or shares with it only one point. Given a hyperplane H of C, one defines the order of any of
its points as the number of lines through the point that are fully contained in H. If C possesses geometric
hyperplanes, then one can define the Veldkamp space of C as follows [Buekenhout and Cohen, 2013]: (i)
a point of the Veldkamp space (also called a Veldkamp point of C) is a geometric hyperplane H of C and
(ii) a line of the Veldkamp space (also called a Veldkamp line of C) is the collection H′H′′ of all geometric
hyperplanes H of C such that H′ ∩ H′′ = H′ ∩ H = H′′ ∩ H or H = H′,H′′, where H′ and H′′ are distinct
geometric hyperplanes. If each line of C has three points and C ‘behaves well,’ a line of its Veldkamp space
is also of size three and can equivalently be defined as {H′,H′′,H′∆H′′}, where the symbol ∆ stands for
the symmetric difference of the two geometric hyperplanes and an overbar denotes the complement of the
object indicated.

This geometric construction was used in quantum information theory to accommodate quantum operators
and their commutation relations [Saniga et al., 2007].

5.2/ Algorithms

In this section, we will present three algorithms. One which computes the Veldkamp points by bruteforce,
another one which computes the Veldkamp lines. The latter is an improvement of the first one, in the case
where the geometry can be expressed as a Cartesian product G = g′ × Li, where Li is a line of i points and
g′ is a Cartesian product.

But in what follows, we consider only lines composed of three points.

25

26 CHAPTER 5. VELDKAMP SPACES

5.2.1/ Bruteforce

In what follows, ”bruteforce” means that the algorithm checks every possibility to determine the result. We
will introduce an algorithm which works for every geometry.

5.2.1.1/ Veldkamp points

The following algorithm is used to compute Veldkamp points by bruteforce. This means that for each subset
of points, the algorithm checks if this subset is a hyperplane.

Algorithm 5.1 ComputeHyperplanes
List<VeldkampPoints>veldkampPoints← new List<VeldkampPoints>
for i← 1 to numberO f Points − 1 do

for combination in combinationsi do . combinations of i points
if isHyperplane(combination) then

add(veldkampPoints, combination)
end if

end for
end for
return veldkampPoints

Algorithm 5.2 isHyperplane algorithm
function isHyperplane(potentialHyperplane) . potentialHyperplane is a subset of points

for line in lines do
intersect ← intersects(potentialHyperplane, line)
if isEmpty(intersect) then

return False
end if . If the intersection is a single point, we can’t conclude.
if isLine(intersect) then

if not(isIncludeIn(potentialHyperplane, line)) then
return False

end if
end if

end for
return True

end function

• isEmpty(line : Line) - checks if the intersection is null.

• isLine(line : Line) - checks if the intersection contains more than one point.

• isIncludeIn(first : Line, second : Line) - checks if the second line is included in the first one.

Performance analysis. In this section we assume that all lines have n points, where n is the total number
of points of the geometry. This approximation is here to compute the complexity of the worst case.

To compute all the combinations, the complexity of the algorithm is
∑n

k=1 k ×
(

n
k

)
.

5.2. ALGORITHMS 27

n∑
k=1

k ×
(
n
k

)
=

n∑
k=1

n!
(k − 1)!(n − k)!

,

= n ×
n∑

k=1

(n − 1)!
(k − 1)!(n − 1 − (k − 1))!

,

= n ×
n∑

k=1

(
n − 1
k − 1

)
,

= n ×
n−1∑
k=0

(
n − 1

k

)
,

= n × (1 + 1)n−1,

= n × 2n−1.

(5.1)

For each combination, the algorithm checks whether the subset of points is a hyperplane (algorithm 5.2).
For all lines, the algorithm computes the intersection (complexity O(n2) in worst case). The complexity of
isHyperplane in the worst case is O(m ∗ n2), where m is the number of lines.

This leads to a global complexity of O(n3 × 2n−1 × m) to find all the Veldkamp points.

Performance analysis. In what follows, we assume that the considered geometry is the Segre variety S N

the Cartesian product of N lines of size 3, where N is the rank The number of points according to N is 3N

and the number of lines is equal to N × 3N−1. This leads to a complexity of O(3N3+N−1 × 23N−1 × N).

5.2.1.2/ Veldkamp lines

The following algorithm is used to compute Veldkamp lines.

Algorithm 5.3 Find Veldkamp lines
List<VeldkampLines>veldkampLines← new List<VeldkampLines>
for combination in combinations2 do . combinations of 2 hyperplanes

Hyperplane h1 = element 0 in combination
Hyperplane h2 = element 1 in combination
Hyperplane h3 = computeComplementOfTheSymmetricDifference(h1, h2)
int indexH3 = indexOf h3 in hyperplanes
if index of element 1 in combination < indexH3 then . Test if the Veldkamp lines have

already been computed
VeldkampLine vl = new VeldkampLine(h1, h2, h3)
put vl in veldkampLines

end if
end for
return veldkampLines

28 CHAPTER 5. VELDKAMP SPACES

Algorithm 5.4 Compute the complement of the symmetric difference of two hyperplanes
function computeComplementOfTheSymmetricDifference(h1 : Line, h2 : Line)

List<Integer >result← new List<Integer >
i← 0
j← 0
for point in points do . For each point of the geometry

if i < number of points in h1 AND (getPoint i in h1 = element) then
i← i + 1
if j < number of points in h2 AND (getPoint j in h2 = element) then

j← j + 1
add element in result

end if
else

if j < number of points in h2 AND (getPoint j in h2 = element) then
j← j + 1

else
add element in result

end if
end if

end for
return result

end function

Performance analysis. In what follows, we assume that the list of hyperplanes is sorted out. The order of
the hyperplanes doesn’t have any mathematical sense. It’s only to reduce the complexity of indexOf. For
each combination of two hyperplanes, the complement of the symmetric difference of these two hyperplanes
is computed, then if the Veldkamp lines have already been computed, the line isn’t added to the list.

The complexity of the main loop is O(n2). The complexity of computeComplementOfTheSymmetricDiffer-
ence is O(n), where n is the number of points in the geometry. The complexity of indexOf is O(ln(m)), where
m is the number of hyperplanes.

This yields a global complexity of O(ln(m) × n3).

Performance analysis. In what follows, we assume that the considered geometry is S N , where N is the
rank.

The number of hyperplanes in S N is 22N
− 1.

So the complexity in term of dimension is O(33N × ln(22N
− 1)).

5.2.2/ Improvement

In this section we will present an improvement of the algorithm used to compute the Veldkamp points that
employs some mathematical relation in order to reduce the complexity.

5.2.2.1/ Veldkamp points

This algorithm uses a geometric relation to compute the hyperplanes of L3 × E, where E is a point-line
geometry; namely, the hyperplanes of L3 × E are computed using the Veldkamp lines and the Veldkamp
points of E [Saniga et al., 2014].

5.2. ALGORITHMS 29

Algorithm 5.5 Find Veldkamp point algorithm
List<VeldkampPoints>veldkampPoints← new List<VeldkampPoints>
for veldkampLine in veldkampLines do

List<Line>hypers← getHyperplanes(veldkampPoints, veldkampLine)
List<List<Line>>permutations← computePermutations(hypers)
for permutation in permutations do

Line veldkampPoint← new Line
for line in permutation do

Line shiftedLine← addScalar(line, i * nbrOfPointsInGeometry)
addPoints(hyperplane, getPoints(shiftedLine))

end for
insert(veldkampPoints, hyperplane)

end for
end for

Line fullGeometry← new Line(geometryPoints)

for veldkampPoint in veldkampPoints do
Line hyperplane← new Line
addPoints(hyperplane, getPoints(veldkampPoint))
shiftedLine← addScalar(veldkampPoint, nbrOfPointsInGeometry)
addPoints(hyperplane, getPoints(shiftedLine))
shiftedLine← addScalar(fullGeometry, 2 × nbrOfPointsInGeometry)
addPoints(hyperplane, getPoints(shiftedLine))
insert(veldkampPoints, hyperplane)

hyperplane← new Line
addPoints(hyperplane, getPoints(veldkampPoint))
shiftedLine← addScalar(fullGeometry, nbrOfPointsInGeometry)
addPoints(hyperplane, getPoints(shiftedLine))
shiftedLine← addScalar(veldkampPoint, 2 × nbrOfPointsInGeometry)
addPoints(hyperplane, getPoints(shiftedLine))
insert(veldkampPoints, hyperplane)

hyperplane← new Line
addPoints(hyperplane, getPoints(fullGeometry))
shiftedLine← addScalar(veldkampPoint, nbrOfPointsInGeometry)
addPoints(hyperplane, getPoints(shiftedLine))
shiftedLine← addScalar(veldkampPoint, 2 × nbrOfPointsInGeometry)
addPoints(hyperplane, getPoints(shiftedLine))
insert(veldkampPoints, hyperplane)

end for
return veldkampPoints

First, for each permutation of VeldkampLines hyperplanes, the new hyperplanes are computed. After that a
hyperplane is taken twice with the full geometry E, and for each permutation of those hyperplanes the new
one is computed.

Performance analysis. In this section, we assume that the hyperplanes and the Veldkamp lines of E are
known. Moreover, we assume that a hyperplane has n point in the worst case, where n is the number of

30 CHAPTER 5. VELDKAMP SPACES

points in E.

First, for each Veldkamp line, every permutation is computed, thus for each permutation, the hyperplane
is computed. After having been computed, the hyperplane is added to the list of Veldkamp points. The list
used have an insertion cost of O(1).

The complexity of computePermutations is O(m!), where m is the number of elements [Sedgewick, 1977].
But, since there are only 3 elements, the complexity is constant.

Likewise, the complexity of the loop on the permutation is also constant. The complexity of addScalar is
O(n).

So, the complexity of this first loop is: O(nbrO f VeldkampLinesO f E × n).

Second, for each hyperplane of E, 3 hyperplanes of L3 × E are computed. The complexity of this loop is
O(nbrO f HyperplanesO f E × n) since the complexity of addScalar is n.

So, the global complexity of this algorithm is O(n × (nbrO f VeldkampLinesO f E +

nbrO f HyperplanesO f E)).

Performance analysis. As seen before, in S N , the number of hyperplanes and Veldkamp lines can be
expressed according to the rank N. Moreover, the number of points in S N can also be expressed in terms of
N.

numberO f Points = 3n.

So the complexity of this algorithm in terms of N is

O(3N × (2N−1 − 1) ×
2(2N−1−1) + 2

3
).

Figure 5.1: Comparison of the two algorithms. (ln scale)
Red — the first version, blue — the second one

5.2. ALGORITHMS 31

Acknowledgements

We are extremely grateful to Frédéric Holweck and Metod Saniga for helping us to bring this report to a
successful completion, introducing us to their ongoing research at the UTBM and for thoroughly reviewing
our report.

Bibliography

Francis Buekenhout and Arjeh M. Cohen. Diagram Geometry: Related to Classical Groups and Buildings.
Springer, 2013. ISBN 978-3-642-34453-4.

Tim Roughgarden. Coursera mooc, algorithms: Design and analysis, part 1, 2016. URL https://www.
coursera.org/course/algo. [Online; accessed June 8, 2016].

Metod Saniga, Michel Planat, Petr Pracna, and Hans Havlicek. The veldkamp space of two-qubits. 2007.
URL http://www.emis.ams.org/journals/SIGMA/2007/075/sigma07-075.pdf. [Online; accessed June 08,
2016].

Metod Saniga, Hans Havlicek, Frédéric Holweck, Michel Planat, and Pracna Petr. Veldkamp-space aspects
of a sequence of nested binary segre varieties. 2014.

Metod Saniga, Frédéric Holweck, and Petr Pracna. Veldkamp spaces: From (dynkin) diagrams to
(pauli) groups. 2016. URL https://www.researchgate.net/publication/302378003 Veldkamp Spaces
From Dynkin Diagrams to Pauli Groups.

Robert Sedgewick. Permutation Generation Methods. 1977.

Robert Sedgewick and Kevin Wayne. Insertion sort trace, 2002-2014a. URL http://algs4.cs.princeton.edu/

21elementary/images/insertion.png. [Online; accessed May 16, 2016].

Robert Sedgewick and Kevin Wayne. Selection sort trace, 2002-2014b. URL http://algs4.cs.princeton.edu/

21elementary/images/selection-2.1.1.png. [Online; accessed April 26, 2016].

Robert Sedgewick and Kevin Wayne. Algorithms, fourth edition. Addison-Wesley Professional, 2011.
ISBN 978-0-321-57351-3.

Robert Sedgewick and Kevin Wayne. Coursera mooc, algorithms, part 1, 2016. URL https://www.coursera.
org/course/algs4partI. [Online; accessed June 8, 2016].

Ernest Shult. Points and Lines: Characterizing the Classical Geometries. Springer, 2011. ISBN 978-3-
642-15627-4.

33

https://www.coursera.org/course/algo
https://www.coursera.org/course/algo
http://www.emis.ams.org/journals/SIGMA/2007/075/sigma07-075.pdf
https://www.researchgate.net/publication/302378003_Veldkamp_Spaces_From_Dynkin_Diagrams_to_Pauli_Groups
https://www.researchgate.net/publication/302378003_Veldkamp_Spaces_From_Dynkin_Diagrams_to_Pauli_Groups
http://algs4.cs.princeton.edu/21elementary/images/insertion.png
http://algs4.cs.princeton.edu/21elementary/images/insertion.png
http://algs4.cs.princeton.edu/21elementary/images/selection-2.1.1.png
http://algs4.cs.princeton.edu/21elementary/images/selection-2.1.1.png
https://www.coursera.org/course/algs4partI
https://www.coursera.org/course/algs4partI

Index

E
Extra memory . 6

H
Hyperplanes . 26

I
Insertion sort . 8

M
Master Theorem. 17
Mathematical models . 4
Merge operation . 11
Merge sort . 11

O
Order-of-growth classifications 5

P
Performances . 6

R
Running time . 6

S
Scientific method . 3
Selection sort . 7
Strassen algorithm . 21

T
Tilde approximation . 4

V
Veldkamp lines . 27
Veldkamp points . 26

34

This report deals with the issue of the complexity of cer-
tain algorithms. First, the fundamentals of the study of al-
gorithm complexity are addressed by examining theoretical
aspects and classical sorting algorithms: selection sort, in-
sertion sort and merge sort. Then, a famous theorem called
the Master Theorem is introduced and proved, to be sub-
sequently employed to tackle a certain type of recursive
algorithms – so-called divide-and-conquer algorithms. As
a particularly illustrative example, a well-known algorithm
for matrix multiplication – the Strassen algorithm – is de-
scribed and evaluated. Finally, the theory is applied to an
intriguing geometrical problem as part of the ongoing inter-
national research at the UTBM.

Ce rapport traite d’analyse algorithmique. D’abord, les
fondamentaux de l’étude de la complexité algorithmique
sont abordés en examinant les aspects théoriques et des al-
gorithmes de tri classiques: tri par sélection, tri par in-
sertion et tri par fusion. De plus, le très connu Master
Theorem est introduit et prouvé. Ce théorème est utilisé
pour étudier un certain type d’algorithmes récursifs ap-
pelés algorithmes divide-and-conquer. Pour illustrer cela,
un algorithm pour la multiplication matricielle est présenté,
l’algorithme de Strassen. Enfin, une application à un réel
problème géométrique dans le cadre de la recherche à
l’UTBM est traitée.

Algorithms, Complexity, Sorting, Matrix multiplication, Veldkamp geometry, Master Theorem,
Recursivity, LATEX

Jérôme BOULMIER & Benoı̂t CORTIER• University of Technology of Belfort-Montbéliard

	1 Introduction
	2 Elementary sorting algorithms
	2.1 Fundamentals
	2.1.1 Empirical approach
	2.1.2 Mathematical approach

	2.2 Selection sort
	2.3 Insertion sort

	3 Merge sort
	3.1 Principle
	3.2 Analysis

	4 Master Theorem
	4.1 Theorem
	4.2 Proof
	4.3 Strassen algorithm

	5 Veldkamp spaces
	5.1 Definitions
	5.2 Algorithms
	5.2.1 Bruteforce
	5.2.1.1 Veldkamp points
	5.2.1.2 Veldkamp lines

	5.2.2 Improvement
	5.2.2.1 Veldkamp points

