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Part I

Quantum computation and
randomness
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1 Introduction to Random Number Generation

In most programs nowadays, random numbers are wildly used (from blockchain encryption
to video games). Currently, the most popular way to get one is to use a pseudo-random num-
ber generator[7]. This method uses a chaos algorithm like Xor-shift[8] that takes a “seed” as
input (like the computer clock in milliseconds). This means that even with 2 close seeds, you
will have completely different results. The issue here is that the system is fully determined
by its initial value, so this is not truly random, and you may exploit it. For example, you
may trick a video game that uses this by freezing the computer clock from the game’s point
of view.

If you want to avoid these exploits (when you work in cryptography, for example), you
can use a Hardware Random Generator. This method uses physical events (that can be
related to quantum mechanics) to generate a random number. For instance, a nuclear ra-
diation source with a Geiger counter, or thermal noise. This is way harder to exploit from
an attacker perspective as you cannot manipulate the system. However, you can still try
to predict it, because it may have some bias: you can have the 1s or 0s predominating,
thus your RNG is not stable anymore. For example, with the Geiger counter, although you
have equal probability at first, you will end up having more 0s and less 1s, because of the
decreasing source of radioactivity.

Random number generation is used in cryptography, video games, computer simulation,
or gambling. For computer simulation or gambling, it is important that your system has as
little bias as possible, so pseudo-random generator is great, but for cryptography, you need
to be sure that your seed cannot be precisely known or set, and it is less important to avoid
bias. In these cases, a Hardware generator can be mandatory.

That’s why we looked at quantum computers, with their q-bits and superposed states,
for our AC20. Our goal this semester was to try to generate true random numbers using a
quantum computer, and then determine whether this process works as intended .
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2 Hadamard gate and superposition state

In a normal computer, everything is 0’s and 1’s. Those are represented by a difference in
voltage within the wires. However, in a quantum computer there are no bits, only q-bits
(quantum bits). A q-bit is a normalized (for the hermitian inner product) vector on C2 in
the orthonormal basis (|0〉 ; |1〉), thus a q-bit is a vector equal to a |0〉+b |1〉 with |a|2+|b|2 = 1.

The hermitian inner product is an inner product in a complex vector space where z is
the complex conjugate of z. Let u and v be two complex vectors over Cn, the hermitian
inner product of u and v is: 〈u, v〉 =

∑n
i=1 u1v1. The hermitian inner product must satisfy

the following properties:
Let (u, v, w) be 3 vectors of Cn and α a number of C,

• 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

• 〈u, αv〉 = α〈u, v〉

• 〈αu, v〉 = α〈u, v〉

• 〈u, v〉 = 〈u, v〉

• 〈u, u〉 ≥ 0

• 〈u, u〉 = 0 ⇐⇒ u = ~0

We will now introduce the KET notation:

|u〉 =


u1
u2
...
un

 (1)

And its conjugated transpose, the BRA notation:

〈u| =
(
u1 u2 . . . un

)
(2)

〈u, v〉 = 〈u|v〉 =
n∑
i=1

u1v1 (3)

At this point, a quantum computer is just a more complex computer, but the whole
point of such computing resides in the superposition state. In both quantum and classical
computing, logical gates are used to change the value of a bit/q-bit, but quantum computing
has some exclusive gates like the Hadamard’s gate: when a q-bit goes through this gate it
will be in both state 0 and 1. It means that we will have either a 50% chance of measuring
a 0 and a 50% chance to get a 1.
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Now let’s dive into the physical part to know how the superposition state is working.
There are two different types of quantum computer mostly in use: the first one will measure
the spin of an electron and the Hadamard gate is an electron beam passing through a
magnetic field. After the gate, the spin is deflected towards the north or the south with a
probability of

√
2
2

.

• A |0〉 q-bit will become a 1√
2
(|0〉+ |1〉).

• A |1〉 q-bit will become a 1√
2
(|0〉 − |1〉).

The other type of computer is the one used by IBM. Using the cloud, they are providing
free use of their quantum computer using the cloud, but we will come back to this point
later. In this type of computer we cool down a metal piece (as low as 40 or even 0,015 Kelvin
for IBMQ computers), although there is no tension generator, a small electric flux will travel
through the metal piece. Micro-waving this piece will increase its energy level and when the
energy reaches the first excitement level the q-bit attains the |1〉 state. For the superposition
level, they just send less micro-waves.

The issue with this quantum process is the sensitivity, anything will create noise and
change the result, so you need to isolate your system. they are two solutions: create a vac-
uum chamber or lower the temperature.

Another important gate is the measurement gate, which will get the q-bits out of the
superposition state and return either 0 or 1. In the example below you can see a simple
circuit with a q-bit initialized to 0, one Hadamard’s gate and one measure gate:
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In this circuit the q-bits will pass through a Hadamard gate and go towards a super-
position state, then the measurement gate will end the superposition state and return the
measure.
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3 Cnot gate and entanglement

Hadamard’s gate is the most important quantum gate, but there is another very important
gate: the Pauli-Xgate or CNot gate. This gate will be used on two different q-bits and will
flip the second one (the target q-bit) if and only if the first one (the control q-bit) is in state
|1〉. Mathematically, it can be represented by a 4X4 permutation matrix:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (4)

Let’s consider the state of two q-bits q1 and q2: q. Then, if we apply the CNot gate:
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



a
b
c
d

 =


a
b
d
c

 (5)

As we can see, it will only flip in cases |10〉 and |11〉, in which the control q-bit is equal to 1.
Now if we apply a CNot gate after a Hadamard’s gate using the q-bit in superposition

as a control q-bit, like in the figure below:

After the Hadamard’s gate we will get the following state:

|ψ1〉 =


1√
2

0
1√
2

0

 (6)

Then after the application of the CNot gate:

|ψ2〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1√
2

0
1√
2

0

 =


1√
2

0
0
1√
2

 =
1√
2

(|00〉+ |11〉) (7)

After the passage in a CNot gate we say that the two q-bits are entangled and this is an
entanglement state.
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4 EPR and GHZ

The state used above for the example is called the Bell state or the EPR (Einstein Podolsky
Rosen) pairs due to the paradox of the same name about the entanglement state. When one
measures two q-bits entangled, the first q-bit will have a probability 1

2
of either being a 1 or

a 0. But the second one will be the same as the first.

It’s a problem because if the two q-bits are on the same state either their measurement
states are pre-defined or when the first one is measured it send the result to the other one.
In case one, the problem is about the superposition state:

How can a q-bit in superposition state have a pre-defined measurement value?

Case two would mean that there is an information travel between the two q-bits faster
than light, which is not possible.

John Stewart Bell is an Irish mathematician and physicist who has proven that the global
variable theory is false by creating the Bell inequalities.

X axis

Y axis

Z axis

Assuming we have three directions: X, Y and Z (with 45 degrees between X and Z), as a
q-bit is a normalized vector we can measure whether the q-bit is positive in any direction.
We can have 8 different possible measures:(+X, +Y, +Z), (+X, +Y, -Z), (+X, -Y, +Z),
(+X, -Y, -Z), (-X, +Y, +Z), (-X, +Y, -Z), (-X, -Y, +Z), (-X, -Y, -Z). The inequalities state
that if we had a local variable:

P (+X,+Y ) ≤ P (+Y,+Z) + P (+Z,+X) (8)

Using the maths of quantum mechanics, the value of P (+Y,+Z) is equal to sin2(45
2

) as the
angle between Y and Z is 45 degrees.

P (+X,+Y ) = sin2

(
90

2

)
= 0.5, P (+Y,+Z) = P (+Z,+X) = sin2

(
45

2

)
= 0.23 (9)

In quantum mechanics, the Bell inequalities are violated, so there is no hidden variable.
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Back to our quantum circuit, there are some derivates of the EPR pairs called the GHZ
state. As you can see below, it is a Bell state applied on three q-bits:

This state is following the same rules as the EPR one:

|q1〉 ⊗ |q2〉 ⊗ |q3〉 =



a
b
c
d
e
f
g
h


= a |000〉+ b |001〉+ c |010〉+ d |011〉+ e |100〉+ f |101〉+ g |110〉+ h |111〉

(10)

In our situation it will give: 1√
2
(|000〉+ |111〉) This state got its name from the first person

who studied it: Daniel Greenberger, Michael Horne and Anton Zeillinger. We have already
seen the derivate for 3 q-bits, but is there a derivate for each number of q-bits? Yes but they
don’t have a proper name they are called GHZ4, GHZ5, etc. and they follow the same rules
as the EPR and GHZ state:

They follow the same computation rules for n q-bits:

1√
2

(|0〉⊗N + |1〉⊗N) (11)
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5 First tests and Chi-squared test

5.1 The test with IBM-Quantum Experience

At this point it seems pretty simple to create real randomness, we just have to put a q-bit
on a superposition state using a Hadamard gate and measure it. First we used the IBM-
quantum experience[2] which grants us free access to little quantum computers (between 1
and 15 q-bits) to create a simple circuit with eight Hadamard’s gates and eight measurement
gates as you can see below:

To use a quantum computer you can use a composer with a graphical interface, or you can
code it using Python. We have chosen the second option, using the Quiskit documentation[5].
We have created a new Jupyter page, and we learned how to create and run a quantum code.

%matplotlib inline

# Importing standard Qiskit libraries

from qiskit import QuantumCircuit, execute, IBMQ, ClassicalRegister,

QuantumCircuit

from qiskit.compiler import transpile, assemble

from qiskit.tools.jupyter import *

from qiskit.visualization import *

from qiskit.providers.ibmq import least_busy

from ibm_quantum_widgets import *

from numpy import pi

# Loading your IBM Q account

provider = IBMQ.save_account(’my_token’,overwrite=True)

provider = IBMQ.get_provider(hub=’ibm-q’)

backend = least_busy(provider.backends(filters=lambda x:

x.configuration().n_qubits >= 8 and not x.configuration().simulator and

x.status().operational==True))

print("least busy backend: ", backend)

qc=QuantumCircuit(8,8)
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qc.h(0)

qc.h(1)

qc.h(2)

qc.h(3)

qc.h(4)

qc.h(5)

qc.h(6)

qc.h(7)

qc.barrier(range(8))

qc.measure(range(8),range(8))

job = execute(qc, backend, shots=8196)

result = job.result()

counts=result.get_counts(qc)

print(counts)

The first tricky part is the connection to a quantum computer: after connecting to
provider using your token, you need to get all the usable providers including the simulator,
and only then can you connect to a backend. Our code was connecting to the least busy
backend, thus we didn’t have to wait too long between each test.

Then is the circuit part: we created a circuit with eight q-bits and eight bits, we applied a
Hadamard gate to all the q-bits using the qc.h() function, and then we created a measurement
of all the system. We chose to launch the program 8196 times, so we get more data and be
more precise.
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5.2 Chi-squared explanation

The χ2 test is a statistical test that allows us to evaluate how likely our results would be,
assuming our null hypothesis is true. It uses the Chi-square probability density function[4][6]:

fχ(x; k) =
1

2
k
2 Γ(k

2
)
x

k
2
−1e−

x
2 (12)

Where k is our degree of freedom, and Γ(k
2
) the Gamma function:

Γ(z) =

∫ +∞

0

tz−1e−tdt (13)

It is important to note that

∀k ∈ N+∗,

∫ +∞

0

fχ(x; k)dx = 1 (14)

In our χ2 test (a Pearson’s test), we do n measures on k q-bits. Let H0 be: ”the
probability that there is i q-bits with a state of 1 is equal to pi”. ∀i ∈ J0, kK, let xi be the
observed number and mi be the expected number. We then have:

∀i ∈ J0, kK, mi = n ∗ pi (15)

k∑
i=0

xi = n

k∑
i=0

pi =
k∑
i=0

mi = n (16)
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We chose to reject the null hypothesis H0 if the result is in the 5% most extreme values
of the χ2. Let χ2 be:

χ2 =
k∑
i=0

(xi −mi)
2

mi

(17)

To accept H0, we need to have:∫ χ2

0

fχ(x; k)dx ≤ 0.95 (18)

This is easier to understand with this graph, that represents the chi-squared probability
density for k = 6:

As you can see, for k = 6, the null hypothesis is rejected if χ2 > 12.6
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5.3 Analysing our first results

At first, we have done our test with 8 q-bits (so 8 degrees of liberty). Under our null
hypothesis, pi follows a binomial distribution, with:

• p = 0.5 (because the q-bit state should be 1√
2
(|0〉+ |1〉))

• n = 8196

• pi = P(X = i) =

(
n
i

)
∗ pi ∗ (1− p)n−i

Here are our first results:

i mi xi
(xi−mi)

2

mi

0 32 43 3.78

1 256 387 67.03
2 896 1169 83.18
3 1792 2037 33.50
4 2240 2182 1.50
5 1792 1549 32.96
6 896 642 72.00
7 256 175 25.63
8 32 8 18.00

χ2 337.58

i mi xi
(xi−mi)

2

mi

0 32 58 21.125

1 256 388 68.06
2 896 1114 53.04
3 1792 2053 38.01
4 2240 2213 0.33
5 1792 1537 36.29
6 896 639 73.72
7 256 168 30.25
8 32 22 3.125

χ2 323.95

∫ 323.94

0

fχ(x; 8)dx = 0.999... > 0.95 (19)

With these tests, it is more than extremely unlikely that H0 is true. We now have
to find a new H0 that is more likely to be true.

After counting the average for each q-bit, we found that p should be around 0.535. We
repeated the test with this new value:

i mi xi
(xi−mi)

2

mi

0 32 43 2.61

1 256 387 0.06
2 896 1169 0.03
3 1792 2037 0.12
4 2240 2182 0.09
5 1792 1549 0.31
6 896 642 0.71
7 256 175 0.63
8 32 8 5.48

χ2 10.04

i mi xi
(xi−mi)

2

mi

0 32 58 0.16

1 256 388 0.08
2 896 1114 2.06
3 1792 2053 0.49
4 2240 2213 0.12
5 1792 1537 0.06
6 896 639 0.92
7 256 168 0.06
8 32 22 0.94

χ2 4.9
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∫ 10.04

0

fχ(x; 8)dx = 0.74 < 0.95 (20)∫ 4.9

0

fχ(x; 8)dx = 0.23 < 0.95 (21)

With these results, we can accept H0.

To confirm our results, we re-launched five tests, and for each one, we can accept H0 with
p = 0.465 but the null hypothesis with p = 0.5 is always rejected. Generating a random
number with an equal probability was not as simple as we think using quantum computing.
To be sure that our code was not the issue, we launched it on a simulator provided by IBMQ.
The results on the simulator were almost perfect: it passed the χ2 test with p = 0.5 every
time. Thus, we can say the issue came from the quantum computer.
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5.4 Tests on
√
X and

√
X
>

gates

The Hadamard gate is not the only gate that should allow us to put the q-bit in an equal
superposition state, and then get a random draw. We have done that on 7 q-bits, with two

gates:
√
X and

√
X
>

. We should get this state:

|q0〉 ⊗ |q1〉 ⊗ |q2〉 ⊗ |q3〉 ⊗ |q4〉 ⊗ |q5〉 ⊗ |q6〉 =
1√
128

127∑
i=0

|i〉 (22)

Because the χ2 tests have always rejected the null hypothesis of having a probability of
measuring 50% of 1’s, we now try to approximate the real probability of measuring a 1.
To do that, we use a confidence interval computed at the 95% confidence level. With N
measures, S q-bits measured with a state of 1, we try to find the true probability p. Each
individual q-bit should be in a 1√

2
(|0〉+ |1〉), so p should be around 0.5. We can say that in

95% of the tests:

S

N
− 1.96

√
(S/N)(1− (S/N))

N
< p <

S

N
+ 1.96

√
(S/N)(1− (S/N))

N
(23)

Here are our results for
√
X:

N = 8192

qi S S/N 1.96
√

(S/N)(1−(S/N))
N

0 3803 0.464 0.0108

1 3834 0.468 0.0108
2 4066 0.496 0.0108
3 2857 0.349 0.0103
4 4024 0.491 0.0108
5 3761 0.459 0.0108
6 3801 0.464 0.0108

0.454 < p < 0.501

qi S S/N 1.96
√

(S/N)(1−(S/N))
N

0 3822 0.467 0.0108

1 3823 0.467 0.0108
2 3978 0.486 0.0108
3 3457 0.422 0.0106
4 4009 0.490 0.0108
5 3648 0.445 0.0108
6 3878 0.473 0.0108

0.435 < p < 0.500

As you can see, results are really inconsistent, depending on the q-bit. The q3 q-bit looks
”broken”, with its very low probability of returning a 1. Some q-bits seem to achieve the
goal of the 50% probability, but it is a minority.

The results for
√
X
>

:

N = 8192

16



qi S S/N 1.96
√

(S/N)(1−(S/N))
N

0 3864 0.472 0.0108

1 3907 0.477 0.0108
2 3961 0.484 0.0108
3 3638 0.444 0.0108
4 4010 0.490 0.0108
5 3816 0.466 0.0108
6 3767 0.460 0.0108

0.433 < p < 0.500

qi S S/N 1.96
√

(S/N)(1−(S/N))
N

0 3759 0.459 0.0108

1 3856 0.471 0.0108
2 4053 0.489 0.0108
3 3569 0.440 0.0107
4 4019 0.491 0.0108
5 3848 0.470 0.0108
6 3775 0.461 0.0108

0.425 < p < 0.506

The results here are similar, with some q-bits near 50%, even if there are still noticeable
variations depending on the q-bit.
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5.5 EPR and GHZ tests

We have recreated the EPR and GHZ states using one Hadamar’s gate and some CNOT
gates.

i xi pi pi \ {noise}
00 3818 46,61% 50,70%
01 370 4,52%
10 292 3,56%
11 3712 45,31% 49,30%

Test 1 noise = 8.08%

i xi pi pi \ {noise}
00 3668 44,78% 48,71%
01 335 4,09%
10 326 3,98%
11 3863 47,16% 51,29%

Test 2 noise = 7.41%

i xi pi pi \ {noise}
00 3668 44,78% 48,71%
01 335 4,09%
10 326 3,98%
11 3863 47,16% 51,29%

Test 3 noise = 8.07%

i xi pi pi \ {noise}
00 3699 45,15% 49,35%
01 337 4,11%
10 359 4,38%
11 3797 46,35% 50,65%

Test 4 noise = 8.50%

i xi pi pi \ {noise}
00 3692 45,07% 49,06%
01 347 4,24%
10 320 3,91%
11 3833 46,79% 50,94%

Test 5 noise = 8.14%

i xi pi pi \ {noise}
00 3730 45,53% 49,50%
01 352 4,30%
10 305 3,72%
11 3805 46,45% 50,50%

Test 6 noise = 8.02%

As we can see on these tests, there is around 8% of ”noise” (we call noise the states that
should be impossible, |01〉 and |10〉 here). When we look at the probability of |00〉 and |11〉
afterward, without taking noise into account, we find results that are more acceptable tan
previously, with this time a little predominance of the 1’s.

The results with different GHZ states are not as good as EPR :

GHZ :

i xi pi pi \ {noise}
000 455 0,456827309 0,538461538
001 16 0,016064257
010 16 0,016064257
011 3 0,003012048
100 10 0,010040161
101 42 0,042168675
110 64 0,064257028
111 390 0,391566265 0,461538462

Test 1 noise = 15.16%

i xi pi pi \ {noise}
000 476 0,46484375 0,536036036
001 19 0,018554688
010 5 0,004882813
011 23 0,022460938
100 13 0,012695313
101 20 0,01953125
110 56 0,0546875
111 412 0,40234375 0,463963964

Test 2 noise = 13.28%

There is more noise, and results are far from the 50
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GHZ5 :

i xi pi pi \ {noise}
0 3762 0,464673913 0,59393748
1 38 0,004693676
10 7 0,000864625
11 7 0,000864625
100 56 0,006916996
101 12 0,001482213
110 10 0,001235178
111 64 0,007905138
1000 91 0,011240119
1001 2 0,000247036
1010 4 0,000494071
1011 39 0,004817194
1100 4 0,000494071
1101 30 0,003705534
1110 37 0,004570158
1111 437 0,053977273
10000 105 0,012969368
10001 3 0,000370553
10010 3 0,000370553
10011 5 0,000617589
10100 4 0,000494071
10101 9 0,00111166
10110 8 0,000988142
10111 126 0,015563241
11000 57 0,007040514
11001 14 0,001729249
11010 22 0,002717391
11011 183 0,022603755
11100 10 0,001235178
11101 169 0,020874506
11110 206 0,025444664
11111 2572 0,053977273 0,40606252

Test 1 noise = 21.76%

i xi pi pi \ {noise}
0 3810 0,470602767 0,602371542
1 50 0,006175889
10 12 0,001482213
11 4 0,000494071
100 55 0,006793478
101 19 0,002346838
110 1 0,000123518
111 49 0,006052372
1000 75 0,009263834
1001 1 0,000123518
1010 7 0,000864625
1011 21 0,002593874
1100 5 0,000617589
1101 34 0,004199605
1110 38 0,004693676
1111 452 0,05583004
10000 78 0,009634387
10001 3 0,000370553
10010 1 0,000123518
10011 7 0,000864625
10100 2 0,000247036
10101 15 0,001852767
10110 7 0,000864625
10111 150 0,018527668
11000 55 0,006793478
11001 9 0,00111166
11010 20 0,002470356
11011 198 0,024456522
11100 11 0,001358696
11101 184 0,022727273
11110 208 0,0256917
11111 2515 0,05583004 0,397628458

Test 2 noise = 21.88%

The GHZ5 is even more broken, with a 60% probability of returning the |00000〉 state, and
21% of noise.
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6 Conclusion

At this point we tried several experiments on several computers, and we can generate ran-
dom numbers, but they are not equally probable. We then investigated our results to figure
out what was the issue and why we couldn’t generate random numbers properly. In our
results we found something weird in each test, as there was a weird q-bit which generated a
significantly lower number than the others, and this q-bit is lowering our statistics.

Later we found that our best result (by best we mean the closest to the equally probable
distribution) was in a program we launched just after a computer maintenance. Even then
there were at least 6000 programs running before ours, so we think the issue is hardware
related due to the noise because the computers are not exactly at 0 Kelvin.

Thanks to Mr.Holweck [1], we found a society named ID’quantique[3], selling little elec-
tronic chips for smartphones and computers. These chips are small quantum computers
which generate random numbers and send it to the device thereafter. We wanted to try
whether this computer had the same bias, but unfortunately the starting price was at 1500$
therefore we couldn’t try this by ourselves.
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Part II

More about quantum computation

21



7 Deutsch Josza’s algorithm

During our research we have found a lot of things about quantum computing which are not
directly related to our subject. This section contains some of this research because we felt
it was worthy of interest.

The Deutsch Josza’s algorithm is in fact an improvement of the Deutsch algorithm, so
first we are going to look at the algorithm created by David Deutsch in 1985. This algorithm
checks whether a boolean function f : {0, 1} → {0, 1} is constant or balanced. In classical
computing you need to call the function twice to check if it’s constant or balanced, while in
quantum computing we only need one call.

Just above you can see the Deutsch algorithm circuit: it’s a two q-bits system which
begins in state |0〉 |1〉, lets them pass through a Hadamard’s gate. An oracle will then push
the result through another Hadamard’s gate, but only to the first q-bit before the measure.
Let’s analyse this circuit. After the first Hadamard’s gate, we have:

|ψ1〉 =
1

2
(|0〉+ |1〉)(|0〉 − |1〉) (24)

We then apply the oracle. An oracle is a black box with some mathematical functions inside.
In our case, it will transform |x〉 |y〉 into |x〉 |f(x)⊕ y〉 with ⊕ the XOR logical function. So
after the oracle we obtain:

|ψ2〉 =
1

2
(|0〉 (|f(0)〉 ⊕ 0)− |f(0)〉 ⊕ 1)) + |1〉 (|f(1)〉 ⊕ 0)− |f(1)〉 ⊕ 1)) (25)

Which led us to:

|ψ2〉 =
1

2
(−1f(0) |0〉 (|0〉 − |1〉) +−1f(1) |1〉 (|0〉 − |1〉) (26)

|ψ2〉 =
1

2
(|0〉+ (−1)f(0)⊕f(1) |1〉)(|0〉 − |1〉) (27)

22



Finally we recognize the state of the second q-bit in a superposition state. We are now only
interested in the first q-bit, currently in the following state:

|ψ2〉 =
1√
2

(|0〉+ (−1)f(0)⊕f(1) |1〉) (28)

Now if the function is continuous f(0) = f(1) and the XOR operator returns a 0, our q-bit
will go into:

|ψ2〉 =
1√
2

(|0〉+ |1〉) (29)

If we apply a Hadamard gate on this we will get |0〉. In the other hand, when f(0) 6= f(1)
we have:

|ψ2〉 =
1√
2

(|0〉 − |1〉) (30)

This will give us |1〉 after the passage in the Hadamard’s Gate. Henceforth, this algorithm
will return 0 if the function is constant and 1 otherwise. The problem with this algorithm
is its specificity: it only works for f : {0, 1} → {0, 1}. Josza later worked with Deutsch, and
they improved the algorithm to work on f : {0, n} → {0, 1}. They created this algorithm in
1992. There is only a slight difference between the Deutsch and the Deutsch-Josza algorithm
diagrams: instead of having one q-bit with |0〉 and one with |1〉 we will get n q-bits with |0〉
(|0〉⊗n) and one with |1〉:

At the state ψ1, by applying the tensor product on all the q-bits, we get:

|ψ1〉 =
1√
2n+1

2n−1∑
i=0

|i〉 (|0〉 − |1〉) (31)

The oracle is the same as in the Deutsch algorithm. It will transform |x〉 |1〉 into |x〉 |f(x)⊕ y〉.
At the point |ψ2〉 we get:

|ψ2〉 =
1√
2n+1

2n−1∑
i=0

|i〉 |f(i)⊕ (|0〉 − |1〉)〉 =
1√
2n+1

2n−1∑
i=0

|i〉 (|f(i)〉 − |f(i)⊕ 1〉) (32)
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We know that f(x) is either 0 or 1, hence the inside of the sum of our equation can only be
|i〉 × −1 or |i〉 × 1 depending on the f(x) result, so we can factor the whole equation by:

|ψ2〉 =
1√
2n+1

2n−1∑
i=0

(−1)f(i) |i〉 (|0〉 − |1〉) (33)

As in the Deutsch algorithm, the last q-bit is in a superposition state, we will therefore
ignore this q-bit for the rest of our algorithm:

|ψ2〉 =
1√
2n

2n−1∑
i=0

(−1)f(i) |i〉 (34)

Then the n first q-bits pass through a Hadamard’s gate assuming that ij = i1j1 ⊕ i2j2 ⊕
. . . in−1jn−1, and we get:

|ψ3〉 =
1√
2n

2n−1∑
i=0

(−1)f(i)
1√
2n

2n−1∑
j=0

(−1)ij |j〉 (35)

We can factor it as:

|ψ3〉 =
1

2n

2n−1∑
i=0

2n−1∑
j=0

(−1)f(i)+ij |j〉 (36)

Now assuming that |j〉 = |0〉, we can transform the previous equation:

|ψ3〉 =
1

2n

2n−1∑
i=0

(−1)f(x) (37)

If the function is constant we get 2n

2n
= 1. In the other hand, if the function is balanced:

1
n2 ((

∑2
i=0 1) + (

∑2
i=0−1) = 0. So this algorithm is less complex than a classical algorithm

because we only need to call it once, then in classical computation we need between 2 and
n
2

+ 1 calls to be sure.
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8 Grovers algorithm

Imagine we had a list of N elements, and we want to check the position of a specific element.
In a classical algorithm, the optimal choice would be to check each element of the list in
turn, and notice when we find the desired one. On average, it will check N

2
elements but with

a quantum algorithm the desired element can be found in only
√
N calls, using the Grover

algorithm made by Lov Grover in 1996.

The Grover algorithm looks like the following:

This algorithm will start as the Deutsch-Josza with n (2n = N) but without the |1〉. Then
as usual, all the q-bits are going through a Hadamard’s gate, so it will give us the following
state:

|ψ1〉 =
1√
2n

2n−1∑
i=0

|i〉 =
1√
2n
|ω〉+

1√
2n

2n−1∑
i=0,i 6=ω

|i〉 (38)

At this point the amplitude of ω and that of the other q-bits are all equal to α = 1
2n

.
Assuming we want to find the element ω, we will use the following function inside an oracle,
which is going to associate 1 to f(ω) and 0 to f(i) for all the other i in the array. It will
give us:

|ψ1〉 = − 1√
2n
|ω〉+

1√
2n

2n−1∑
i=0,i 6=ω

|i〉 (39)

After the oracle, we will apply the Grover diffusion operator. It’s three logical gates put
together; a Hadamard’s gate, an oracle equal to (2 |0n〉 〈0n| − In) which can be written as:

1 0 . . . 0
0 −1 . . . 0
...

...
...

0 0 . . . −1

. After this oracle, the third gate is a Hadamard’s gate too. This Grover

diffusion operator will apply an amplitude inversion by the mean, so the amplitude of ω will
increase and the other, decrease:

αi = 2
2n − 2

2
3n
2

− 1

2
n
2

and αω = 2
2n − 2

2
3n
2

+
1

2
n
2

(40)

The amplitude of our ω element will increase as such:
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And that’s all, we are going to repeat the oracle and Grover’s diffusion operator approxi-
mately

√
N times, and each time the amplitude of ω will keep increasing. After all these

repetitions we can measure the state, and we have a great chance to measure our ω, but to
avoid errors this algorithm is generally called 2 times.

We ran this algorithm 8000 times on a computer using IBMQ, Quiskit and the following
code:

# Importing standard Qiskit libraries

import numpy as np

import matplotlib.pyplot as plt

from qiskit import *

from ibm_quantum_widgets import *

from qiskit.compiler import transpile, assemble

from qiskit.tools.jupyter import *

from qiskit.visualization import *

from qiskit.providers.ibmq import least_busy

# Loading your IBM Q account

IBMQ.save_account(’239e6920f40c1c71a95fb58217ecf707322512b8914991c570d52cb07e0d6f6cb01843f9ec2553f024c76fdbbd8140a5931e8207b109d6c06a964cfbea9fa2d3’,

overwrite=True)

IBMQ.load_account()

IBMQ.providers()

provider = IBMQ.get_provider(hub=’ibm-q’, group=’open’, project=’main’)

backend = least_busy(provider.backends(filters=lambda x:

x.configuration().n_qubits >= 2 and not x.configuration().simulator and

x.status().operational==True))

print("least busy backend: ", backend)

#creating the oracle block

oracle = QuantumCircuit(2,name=’oracle’)

oracle.cz(0,1)

oracle.to_gate()
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#creating the Grover’s diffusion’s block

reflection = QuantumCircuit(2,name=’reflection’)

reflection.h([0,1])

reflection.z([0,1])

reflection.cz(0,1)

reflection.h([0,1])

#initializing our circuit

grover_circ=QuantumCircuit(2,2)

#putting Hadamard’s gate, oracle, Grover’s diffusion’s block and measurement

altogether in our circuit

grover_circ.h([0,1])

grover_circ.append(oracle,[0,1])

grover_circ.append(reflection,[0,1])

grover_circ.measure([0,1],[0,1])

#launch the program

execute(grover_circ,backend,shots=8000).result().get_counts()

It gave us the following results: ’00’: 51, ’01’: 292, ’10’: 191, ’11’: 7466, with an ω = 11.
The algorithm without repetition just returns 534

8000
= 0.06675 false measures. This algorithm

is on average pretty accurate. This is a good example on how quantum algorithms can
outperform classical ones.
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9 Quantum Encryption

Quantum computer are a threat to our encryption, for example the RSA, used mostly by
banks, is too long to break for a normal computer, but not for a quantum computer. The
Schor’s algorithm has a polynomial complexity which can break the RSA. Due to this threat,
the encryption must change, and it occurs in two different ways, the post-quantum encryp-
tion (trying to create algorithms producing unbreakable encryption code even for quantum
computer) and the quantum encryption (using quantum computer).

The second solution led to the BB84 protocol (”created by Bennett and Brassard in
1984”), an encryption way in which, even if someone gets your data, he will never be able
to read it. For this protocol, there are three different entities: Alice(A), Bob(B) and Spy(S).
Here, A want to send a secret code to B. They need two communication channels: a classical
and a quantum one. Both channels don’t need to be encrypted or secured.

If A want to send a message to B she will take a string and extract its binary code from
it. Then she will randomly choose for each bit if she transforms it into:

• 0→ |0〉 , 1→ |1〉 the classical mode

• 0→ |0〉+|1〉√
2
, 1→ |0〉−|1〉√

2
the Hadamard mode

A sends all the q-bit to B, he measures the outcome randomly for each q-bit either in
classical or Hadamard mode. Then he will tell in which basis he has measured each q-bit.
All the q-bits sent and measured in the same basis will become the encryption code. B will
then send back to A a small part of the encryption code by the classical channel.

If S has intercepted the quantum transmission, he measures the q-bits and then send
different q-bits to B, so due to the superposition state, the q-bits receipted and sent by S are
not the same. So when A and B share a little portion of the encryption code, if the two keys
are too different they just drop it and repeat the operation until the differences are almost
0. Then A sends the message to B through the classical channel, and he can decrypt it using
the encryption code. Even if S intercepts the encoded message by the classical channel. He
won’t be able to read it as the encryption code is not a mathematical function, but a string
generated with an association of random (Hadamard gate) and pseudo-random (Decision on
the sending and measuring mode).
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10 Appendix

You can find here some additional tests, because it was way too much to be put inside the
text:

GHZ4 :

i xi pi pi \ {noise}
0 3807 0,47023 0,550621927
1 39 0,00482
10 17 0,00210
11 19 0,00235
100 66 0,00815
101 23 0,00284
110 12 0,00148
111 197 0,02433
1000 188 0,02322
1001 14 0,00173
1010 25 0,00309
1011 220 0,02717
1100 14 0,00173
1101 170 0,02100
1110 178 0,02199
1111 3107 0,38377 0,449378073

Test 1 noise = 14.60%

i xi pi pi \ {noise}
0 3811 0,47073 0,550563421
1 26 0,00321
10 20 0,00247
11 23 0,00284
100 54 0,00667
101 27 0,00333
110 12 0,00148
111 190 0,02347
1000 165 0,02038
1001 18 0,00222
1010 41 0,00506
1011 198 0,02446
1100 12 0,00148
1101 190 0,02347
1110 198 0,02446
1111 3111 0,38426 0,449436579

Test 2 noise = 14.50%

i xi pi pi \ {noise}
0 3661 0,45219 0,540847983
1 47 0,00581
10 50 0,00618
11 43 0,00531
100 39 0,00482
101 19 0,00235
110 31 0,00383
111 201 0,02483
1000 172 0,02125
1001 16 0,00198
1010 61 0,00753
1011 269 0,03323
1100 15 0,00185
1101 174 0,02149
1110 190 0,02347
1111 3108 0,38389 0,459152017

Test 3 noise = 16.39%

i xi pi pi \ {noise}
0 3645 0,45022 0,540720961
1 45 0,00556
10 62 0,00766
11 33 0,00408
100 59 0,00729
101 19 0,00235
110 37 0,00457
111 227 0,02804
1000 172 0,02125
1001 18 0,00222
1010 58 0,00716
1011 233 0,02878
1100 18 0,00222
1101 195 0,02409
1110 179 0,02211
1111 3096 0,38241 0,459279039

Test 4 noise = 16.74%
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i xi pi pi \ {noise}
0 3804 0,46986 0,554761558
1 44 0,00543
10 26 0,00321
11 29 0,00358
100 46 0,00568
101 22 0,00272
110 25 0,00309
111 225 0,02779
1000 164 0,02026
1001 13 0,00161
1010 35 0,00432
1011 209 0,02582
1100 17 0,00210
1101 190 0,02347
1110 194 0,02396
1111 3053 0,37709 0,445238442

Test 5 noise = 15.30%
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GHZ5 :

i xi pi pi \ {noise}
0 3762 0,464673913 0,59393748
1 38 0,004693676
10 7 0,000864625
11 7 0,000864625
100 56 0,006916996
101 12 0,001482213
110 10 0,001235178
111 64 0,007905138
1000 91 0,011240119
1001 2 0,000247036
1010 4 0,000494071
1011 39 0,004817194
1100 4 0,000494071
1101 30 0,003705534
1110 37 0,004570158
1111 437 0,053977273
10000 105 0,012969368
10001 3 0,000370553
10010 3 0,000370553
10011 5 0,000617589
10100 4 0,000494071
10101 9 0,00111166
10110 8 0,000988142
10111 126 0,015563241
11000 57 0,007040514
11001 14 0,001729249
11010 22 0,002717391
11011 183 0,022603755
11100 10 0,001235178
11101 169 0,020874506
11110 206 0,025444664
11111 2572 0,053977273 0,40606252

Test 1 noise = 21.76%

i xi pi pi \ {noise}
0 3810 0,470602767 0,602371542
1 50 0,006175889
10 12 0,001482213
11 4 0,000494071
100 55 0,006793478
101 19 0,002346838
110 1 0,000123518
111 49 0,006052372
1000 75 0,009263834
1001 1 0,000123518
1010 7 0,000864625
1011 21 0,002593874
1100 5 0,000617589
1101 34 0,004199605
1110 38 0,004693676
1111 452 0,05583004
10000 78 0,009634387
10001 3 0,000370553
10010 1 0,000123518
10011 7 0,000864625
10100 2 0,000247036
10101 15 0,001852767
10110 7 0,000864625
10111 150 0,018527668
11000 55 0,006793478
11001 9 0,00111166
11010 20 0,002470356
11011 198 0,024456522
11100 11 0,001358696
11101 184 0,022727273
11110 208 0,0256917
11111 2515 0,05583004 0,397628458

Test 2 noise = 21.88%
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i xi pi pi \ {noise}
0 3763 0,464797 0,595882819
1 57 0,007041
10 14 0,001729
11 5 0,000618
100 47 0,005805
101 14 0,001729
110 6 0,000741
111 59 0,007288
1000 102 0,012599
1001 7 0,000865
1010 5 0,000618
1011 37 0,004570
1100 4 0,000494
1101 26 0,003211
1110 28 0,003458
1111 446 0,055089
10000 100 0,012352
10001 4 0,000494
10010 2 0,000247
10011 8 0,000988
10100 4 0,000494
10101 15 0,001853
10110 9 0,001112
10111 138 0,017045
11000 68 0,008399
11001 13 0,001606
11010 29 0,003582
11011 170 0,020998
11100 15 0,001853
11101 170 0,020998
11110 179 0,022110
11111 2552 0,315217 0,404117181

Test 3 noise = 22.00%

i xi pi pi \ {noise}
0 3730 0,460721 0,584547877
1 45 0,005558
10 13 0,001606
11 3 0,000371
100 47 0,005805
101 19 0,002347
110 8 0,000988
111 47 0,005805
1000 98 0,012105
1001 7 0,000865
1010 5 0,000618
1011 25 0,003088
1100 3 0,000371
1101 26 0,003211
1110 33 0,004076
1111 428 0,052866
10000 81 0,010005
10001 1 0,000124
10010 3 0,000371
10011 15 0,001853
10100 1 0,000124
10101 10 0,001235
10110 7 0,000865
10111 158 0,019516
11000 76 0,009387
11001 9 0,001112
11010 16 0,001976
11011 192 0,023715
11100 7 0,000865
11101 163 0,020133
11110 169 0,020875
11111 2651 0,052866 0,415452123

Test 4 noise = 21.18%
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i xi pi pi \ {noise}
0 3785 0,467514822 0,603957236
1 38 0,004693676
10 13 0,001605731
11 5 0,000617589
100 46 0,005681818
101 18 0,00222332
110 5 0,000617589
111 46 0,005681818
1000 112 0,013833992
1001 3 0,000370553
1010 6 0,000741107
1011 39 0,004817194
1100 6 0,000741107
1101 33 0,004076087
1110 37 0,004570158
1111 442 0,054594862
10000 92 0,011363636
10001 0 0
10010 4 0,000494071
10011 14 0,001729249
10100 1 0,000123518
10101 7 0,000864625
10110 11 0,001358696
10111 162 0,020009881
11000 62 0,007658103
11001 19 0,002346838
11010 32 0,003952569
11011 200 0,024703557
11100 15 0,001852767
11101 165 0,020380435
11110 196 0,024209486
11111 2482 0,054594862 0,396042764

Test 5 noise = 22.59%
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